
Programmer’s Guide to the SNP Facility

A Facility for Monitoring TCP/IP-Based Communications

Nilesh R. Gohel

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri  63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0

August 3, 1998

This document describes usage of a software facility
based on the Solaris 2.3 (SunOS 5.3) operating system for
monitoring TCP/IP communications on shared media net-
works. It may be used to monitor DICOM communica-
tions based on TCP/IP.

 Copyright (c) 1995, 1998 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/snp.frm



orks
pecif-
n (net-

 to be
’s TCP
d time-
te infor-

ata
ator,
th each
ce the
r. The
le

tions as
1 Introduction

The SNP facility provides a means to monitor data communications on shared media netw
(e.g. Ethernet) at the TCP level. The monitoring is performed in real-time. The facility was s
ically developed for the Sun Solaris 2.3 (Sun OS 5.3) operating system. Only one associatio
work connection) may be monitored at a time. Parameters of the communication that need
specified are initiator IP host name/address, acceptor IP host name/address, and acceptor
port number. Additional parameters include the buffersize, device filename and number, an
outs. Callback functions also need to be  specified to retrieve the parsed TCP data and sta
mation  from the facility. In order to monitor communications, the  following set of steps /
function calls should be implemented in the given order:

SNP_Init

SNP_RegisterCallback (One for data in each direction,  and one for state info.)

SNP_Start

SNP_Stop

SNP_Terminate

A coding example entitled “Generic usage of SNP facility” is provided.

For a more complete description of the software architecture, refer to the manual entitled
“DICOM Test Tools: A Guide to  Programs for Testing DICOM Functionality.”

2 Data Structures

There are instances in which an application using the SNP facility stores the parsed TCP d
stream to data files. In such cases, the data is stored in two files (one for data from the initi
and the other for data from the acceptor) in which case it is necessary to store a header wi
of buffer of data. Such a header would be used to signify the ends of associations, sequen
buffers of data between the files, and also provide information about the length of the buffe
following data structure, found in the header file for the facility (snp.h), describes an examp
header format for the buffers.

typedef struct {
u_long type;
u_long seq;
u_long len;
} TCP_BUF_HEAD;

type represents the type of header and / or its direction. Here are the types and their defini
per snp.h:
1/12



 the files
 data

f the
0       ITOA            Data from initiator to acceptor
1       ATOI            Data from acceptor to initiator
2       SNP_EOA                  Signifies the End of Association

seq is sequence number of the buffer and may be used to check for the sequence between
for data from the initiator to acceptor, and acceptor to initiator.  len provides the length of the
buffer to follow.

3 Include Files

To use the SNP facility, applications need to include these files in the order given below:

#include “dicom.h”
#include “lst.h”
#include “condition.h”
#include “snp.h”

4 States

The following are the integer state constants as defined in snp.h used to report the status o
network monitoring. The meaning of each is provided.

NORMAL                  All is well

END_ASSOC               End of association

DATA_OVERFLOW           Data overflow error

GETMSG_FAIL             getmsg() failure

RESET_ASSOC_INI                 Association aborted by initiator

RESET_ASSOC_ACC                 Association aborted by acceptor

NONCONTIGDATA           Non contiguous data passed to application

WRITECALLBACKFAIL       Failure in callback to write data

LSTINSFAIL              Failure using LST facility Insert()

DROPPEDPACKETS          Kernel processing has dropped packets

BAD_END_ASSOC           Bad end of association - was not able to capture all data
2/12



s

urn:
CON_TIMEOUT             Connection timed out (with segments still to be ack’ed)

STRGETMSG_TIMEOUT       strgetmsg() timed out (in STREAM setup)

5 Return Values

The SNP facility uses the COND facility to form and report conditions.  The COND facility i
documented in the Programmer’s Guide to the COND facility.

SNP routines return a condition value.  These are condition values the SNP facility may ret

6 SNP Routines

This section provides detailed documentation for each SNP facility routine.

SNP_NORMAL Normal return from SNP routine

SNP_MALLOCERROR Error in performing memory allocation (malloc)

SNP_CLOSEERROR Error in closing file

SNP_OPENERROR Error in opening file

SNP_SIGSETERROR Error setting up interrupt (signal)

SNP_STREAMSETUP Error setting up kernel level streams processing

SNP_LSTCREATFAIL Error creating LST list

SNP_CALLBACKSMISSING All callbacks not registered

SNP_CALLBACKFAIL Error using callback function

SNP_ARGERROR Problem with function argument

SNP_IOCTLFAIL ioctl failure

SNP_UNIMPLEMENTED Error - unimplemented function

SNP_PUTMSGFAIL putmsg failure

SNP_DLPIFAIL Failure in DLPI routine

SNP_DLPIEXPECT DLPI function strgetmsg received unexpected mes-
sage

SNP_ALARMSET Failure of alarm setting function

SNP_GETMSGFAIL getmsg failure in function
3/12



led
SNP_Init

Name

SNP_Init –initializes snooping on a TCP/IP association .

Synopsis

CONDITION SNP_Init()

Description

The routine is called to set up the SNP facility for snooping on a TCP/IP association. It should be cal
before any other SNP function is called.

Return Values

SNP_NORMAL
4/12



SNP_Terminate

Name

SNP_Terminate –terninate snooping on a TCP/IP association .

Synopsis

CONDITION SNP_Terminate()

Description

The routine is called to tear down the SNP facility for snooping on a TCP/IP association.

Return Values

SNP_NORMAL
5/12



te infor-

lar

higher
tered.
ks dur-
SNP_RegisterCallback

Name

SNP_RegisterCallback –to register callback functions to pass TCP parsed data  and SNP facility sta
mation to higher software layers

Synopsis

CONDITION SNP_RegisterCallback(CONDITION(*callback) (), int callbackType, void *ctx)

callback the name of the function to be used to pass parsed TCP data or SNP facility state
information back to the application

callbackType specifies that the callback function being register should be used for data in a particu
direction or on state information. The forms of the callback functions are provided:

SNP_CALLBACK_ITOA on data from Initiator to Acceptor with callback function of the form:

CONDITION callback_func_name(char *buffer, int buffer_size, void *ctx)

SNP_CALLBACK_ATOI on data from Acceptor to Initiator with callback function of the form:

CONDITION callback_func_name(char *buffer, int buffer_size, void *ctx)

SNP_CALLBACK_STATE on state information with callback function of the form:

CONDITION callback_func_name(int state, void *ctx)

ctx context pointers used by application that are passed back in callbacks

Description

This routine registers callback functions for the passing of parsed TCP data and state information to 
software layers. Use of the SNP facility for snooping requires that all three callback functions be regis
While snooping, the functions may be re-registered thus providing greater freedom to change callbac
ing operation.

Return Values

SNP_NORMAL
6/12



des initi-

, int

t

re

tering
n

acks to
ermine
cility.
SNP_Start

Name

SNP_Start - sets up and starts snooping on all TCP/IP associations with the same parameters (inclu
ator name or IP address, acceptor name or IP address, acceptor TCP port)

Synopsis

CONDITION SNP_Start(char *device, int ppa, char *initiator, char *acceptor, int port, int timeOutCon
timeOutBuf, int bufferSpace)

device shared media network device driver file name on which to be snooping  e.g. Etherne
interface: “/dev/le”

ppa Physical Point of Access (PPA) - corresponds to the number of the above device
e.g. 0 for /dev/le0 which is the first network device of type /dev/le

initiator host name or IP address of communication initiator
acceptor  host name or IP address of communication acceptor
port port number on acceptor that will be used
timeOutCon number of seconds for timeout on connection for which there is no traffic and there a

outstanding acknowledgements
timeOutBuf number of seconds for timeout by STREAMS buffer module in the kernel space
bufferSpace number of bytes of space used for chunks by STREAMS kernel buffer module

Description

SNP_Start starts the snooping for associations after setting up the STREAMS chain in the kernel for fil
and buffering of the TCP stream to be monitored, and interfacing with the network device driver. Upo
return of this function, the set up for the monitoring is complete.

As the SNP facility uses asynchronous I/O, the snooping operation is then interrupt-driven using callb
pass data and state information. By examining the state information, the calling software is able to det
the end of associations. A coding example follows the function definitions to illustrate usage of the fa

Return Values

SNP_NORMAL
SNP_CALLBACKSMISSING
SNP_ARGERROR
SNP_OPENERROR
SNP_MALLOCERROR
SNP_STREAMSETUP
SNP_SIGSETERROR
SNP_LSTCREATFAIL
7/12



SNP_Stop

Name

SNP_Stop - To stop the snooping activities.

Synopsis

CONDITION SNP_Stop()

Description

SNP_Stop stops the snooping and performs most of the tear-down activities.

Return Values

SNP_NORMAL
SNP_CLOSEERROR
8/12



SNP_StateMsg

Name

SNP_StateMsg - To get the textual interpretation of a SNP facility state number.

Synopsis

char* SNP_StateMsg(int state)

state Number of state to be interpreted

Description

SNP_StateMsg returns the textual representation of state number provided

Return Values

Pointer to character string interpreting SNP facility state number.
9/12



SNP_Debug

Name

SNP_Debug - Turns on/off debugging messages of SNP facility.

Synopsis

void SNP_Debug(BOOLEAN flag)

flag TRUE to turn on debugging, FALSE to turn off debugging.

Description

SNP_Debug turns on/off debugging messages of SNP facility

Return Values

None
10/12



ce of
7 Code Examples

7.1 Generic usage of SNP facility

The following is an example of how the facility may used be to monitor some associations.
Although, callback functions are registered in the code, they are not specified. The sequen
events for set up and tear down is important to note.

/* Place SNP facility in debug mode - turn off for now
*/

SNP_Debug(FALSE);

/* Initialize SNP facilities
*/

cond = SNP_Init();
if (cond != SNP_NORMAL) {
    COND_DumpConditions();
    exit(1);
}

/* Register callback functions
*/

cond = SNP_RegisterCallback(callbackState, SNP_CALLBACK_STATE, NULL);
if (cond != SNP_NORMAL) {
    COND_DumpConditions();
    exit(1);
}

cond = SNP_RegisterCallback(callbackITOA, SNP_CALLBACK_ITOA, NULL);
if (cond != SNP_NORMAL) {
    COND_DumpConditions();
    exit(1);
}

cond = SNP_RegisterCallback(callbackATOI, SNP_CALLBACK_ATOI, NULL);
if (cond != SNP_NORMAL) {
    COND_DumpConditions();
    exit(1);
}

/* Commence the snooping with given arguments
*/

cond = SNP_Start(“/dev/le”, 0, “dicom1”, “dicom2”, 104, 20, 5, 32768);
if (cond != SNP_NORMAL) {
    COND_DumpConditions();
    exit(1);
11/12



}

printf(“\nInitialization complete .... ready to monitor communica-
tions\n”);

/*  Until the correct number of associations have been
    monitored or until something goes wrong keep snooping
    - update user with number of associations to go (Note:
    Global varible “assoc” is the number of associations
    remaining, decrement by callback for state information
    on receiving each END_OF_ASSOC message)
*/

while (assoc > 0) {
    sleep(1);
}

/* If finished in a bad state .... something went wrong
*/

if (current_state != NORMAL) {
    printf(“\nError: %s\n”,SNP_StateMsg(current_state));
    exit(1);
} else
    printf(“\nCompleted monitoring associations normally\n”);

/* Discontinue snooping operations
*/

cond = SNP_Stop();
if (cond != SNP_NORMAL)
    COND_DumpConditions();

/* Terminate activities with SNP facility
*/

cond = SNP_Terminate();
if (cond != SNP_NORMAL)
    COND_DumpConditions();
12/12


	Programmer’s Guide to the SNP Facility
	1 Introduction
	2 Data Structures
	3 Include Files
	4 States
	5 Return Values
	6 SNP Routines

	SNP_Init
	SNP_Terminate
	SNP_RegisterCallback
	SNP_Start
	SNP_Stop
	SNP_StateMsg
	SNP_Debug
	7 Code Examples
	7.1 Generic usage of SNP facility



