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• Glioblastoma multiforme (GBM) is the most common 

primary malignant brain tumor.  

• GBM’s infiltrative nature makes radiological tumor 

margin delineation challenging, which in turn 

affects the extent of surgical resection. 

• Our aim is to develop a rule-based multi-parametric 

approach which incorporates multiple MRI markers 

in a concerted fashion as an improved method of 

characterizing the extent of viable tumor within a 

GBM lesion. 

• Further, we propose a machine learning based 

multi-parametric approach, which uses radiologist-

generated labels to train a classifier that is able to 

classify tissue on a voxel-wise basis and 

automatically generate a tumor segmentation. 

• Preoperative MRI examinations of subjects with GBM 

were chosen from the COmprehensive Neuro-oncology 

Data Repository (CONDR) at Washington University in 

St. Louis and Swedish Neuroscience Institute (Seattle, 

WA).  

• 8 MRI sequences, primary and derived, [T1 pre-

contrast (Fig.1αA), T1 post-contrast (B), T2 (C), Fluid 

Attenuated Inversion Recovery (FLAIR) (D), 

Susceptibility Weighted Imaging (SWI) (E), Apparent 

Diffusion Coefficient (ADC) (F), relative Cerebral 

Blood Volume (rCBV) (G), and TraceW (H)] were co-

registered and transformed to standard template 

space with 1 mm isotropic voxels. A board-certified 

radiologist manually segmented each MRI volume 

(Figure 1α) to produce a set of 6 total object maps 

(Figure 1β). 

• Voxel Labels were generated by combining manual 

segmentations (Table 1) based on the radiologist’s 

rule set and estimate of the probability of active 

tumor (Fig. 1γ & Table 2). 

• A Random Forests classifier was trained using a leave-

one-out experimental paradigm. Linear regression 

analysis was also implemented for comparison.  

• Tumor Infiltration (TI) was calculated at 20 locations 

across 7 subjects using needle biopsy pathology 

results.  

• Receiver Operating Characteristic (ROC) analysis was 

used to compare the predictions of the Random 

Forests (RF) classifier and a linear regression-based 

classifier relative to the radiologist’s manual 

segmentation. 

• Further ROC analysis compared radiologist 

segmentations and RF predictions to ground truth 

values at the 20 locations with labeled pathology. 

Methods 

Figure1. Rule-Based Radiologist Analysis Establishes “Truth” 

Table 1. Summary of Segmentations 
MRI 

Parameter 

Criteria Classification for 

Viable Malignancy 

SWI 
Discontinuous areas of 

signal void on SWI 

Indeterminate: 

hemorrhage 

Necrosis 
T2 hyperintensity 

suppressed on FLAIR 

Negative: liquefactive 

necrosis 

FLAIR Hyperintensity on FLAIR 

Positive: possible 

micro-invasion of 

tumor 

Diffusion 

Restriction 

(DR) 

Hyperintensity on 

TraceW; hypointensity  

on ADC 

Positive: viable tumor 

rCBV 

Areas demonstrated 1.75 

times the cerebral blood 

volume compared to 

normal brain tissue 

Positive: viable tumor 

Enhancement 

Hyperintensity on T1 

post-contrast not 

present on T1 pre-

contrast 

Positive: viable tumor 

Table 2. Assigning Probability of Viable Tumor 

Probability of 

Viable Tumor 

Criterion 

Normal Brain Voxel not included in any object map 

Indeterminate Any voxel containing susceptibility artifact 

Low Any voxel containing necrosis 

Moderately Low 

Any voxel containing FLAIR hyperintensity in the 

absence of other positive indicators (enhancement, 

diffusion restriction, or elevated CBV) 

Moderate 

Any voxel containing FLAIR hyperintensity and 

enhancement without additional positive indicators 

(diffusion restriction or elevated CBV) 

Moderately High 

Any voxel containing FLAIR hyperintensity and 

enhancement with one additional positive indicators 

(diffusion restriction or elevated CBV) 

Highest 

Any voxel containing all the positive indicators for 

viable tumor (FLAIR hyperintensity, enhancement, 

diffusion restriction, and elevated CBV) 

Machine Learning Based Tumor Multi-Parametric Probability Maps  

• The Random Forests (RF) algorithm constructs an ensemble of decision trees. Each decision tree is constructed 

by selecting a random subset of features and training examples, creating a variety of experts. The leaves of 

the trees are associated with constant predictions. RF combines the votes of all the trees for overall 

prediction. 

• To construct a tumor probability estimate and tissue segmentations, feature vectors are constructed for each 

voxel in the brain,  using the value of that voxel in each of the 8 MR data types.   

• Once trained, the classifier is applied to every voxel  (every feature vector) in the test set and classifies the 

tissue as normal or malignant. 

• A leave-one-out experiment with N labeled data sets uses N-1 data sets to train the classifier and then predicts 

the labels of the Nth.  This process is repeated until all data sets have been predicted by the Classifier.  Figure 

2 illustrates the radiologist’s multi-parametric tumor map and the map predicted by the Random Forests 

Classifier for one case. 

Figure 2. Tumor Segmentations 

Radiologist Prediction Linear Regression Random Forests 

The Random Forests algorithm classifies other brain tissue as having a high probability of being cancer.  

Separating false positives from true positives in these areas is an area of active research. 

 

 
 
 
 
 
 
 
 
 
 
 
 

• ROC analysis (Classifiers vs. Radiology) shows that both linear 

and Random Forests (RF) classifiers are able to generate 

reasonable multi-parametric probability maps predicting 

radiologist-generated segmentations and tumor extent. The 

RF classifier results in an Area Under Curve (AUC) of 0.92 

compared to an AUC of 0.77 for the linear model. 

• Using pathology as truth, ROC analysis (Predictions vs. 

Pathology) shows poor correlation with radiologist's 

designation of Presence of Tumor (PoT) and Random Forests 

Prediction (RFP).  ROC AUC were 0.41 and 0.32, respectively. 

• Pathology indicates 100% tumor infiltration at the point 

specified by * in (a) while the same coordinates place the 

marker outside the margins of a radiologist’s Presence of 

Tumor (PoT) segmentation (b) and Random Forests Prediction 

(RFP) bounds (c).  

• Similarly,  pathology reports Low Probability of tumor 

infiltration (35%) at the point shown in (d). Corresponding 

coordinates in (e) and (f) show High and Moderately High 

probability of tumor predictions by PoT segmentation and RFP. 

• Pathology localization appears to be compromised by brain 

shift and post hoc estimation of biopsy location. 

• The infiltrative nature of gliomas makes assessment of tumor 

burden a challenge. Multi-parametric imaging markers may 

offer a method to improve our measures of tumor invasion 

and, ultimately, extent of resection.  

• By enhancing our multi-parametric approach with Machine 

Learning we eliminate manual segmentation and generate a 

probability map that incorporates contrast enhancement with 

additional MRI markers to accurately predict radiologist 

defined tumor boundaries and tissue type. 

• Validation of radiologist based PoT and machine learning 

based RFP tumor extent using pathology results were 

unsuccessful due to sample localization error and inadequate 

sample size. 

Conclusions 
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